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Symbols

A

b

E

C

l(b)

Ip(b)

N

71

Pesc

T(b)

Y

Z

Z

Z0

P

(7

A

Subscripts:

abr

exc

FSI

NN

nuc

P

PF

T

nuclear meuss nunlber

binomial coefficient

average slope parameter of nucleon-nucleon scattering amplitude, fro2

projectile impact parameter vector, fm

energy, GeV or MeV

two-nucleon kinetic energy in their center-of-mass frame, GeV

defined by equation (3)

defined by equation (7)

total number of projectile nucleus neutrons

number of abraded neutrons

probability that an abraded nucleon escapes without filrther
interaction

probability for not, removing single nucl/_on by abr,xsion

two-nucleon relative position vector, fm

total number of projectile-nucleus protons

number of abraded protons

position vector of projectile along beam direction, fin

collection of constituent relative coordinates for target, fin

nuclear single-particle density, fm 3

cross section, fm 2 or mb

mean-free path, fin

abraded

prefragment excitation

frictional spectator interaction

nucleon-nucleon

nuclear

projectile

prefragment

target
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Abstract

Quantum-mechanical optical model methods for calculating cross

sections for the fragmentation of galactic cosmic ray nuclei by hy-
drogen targets are presented. The fragmentation cross sections are

calculated with an abrasion-ablation collision formalism. Elemental

and isotopic cross sections are estimated and compared with mea-

sured values for neon, sulfur, and calcium ions at incident energies

between _00A Me V and 910A Me V. Good agreement between theory

and experiment is obtained.

Introduction

The fragmentation of galactic cosmic ray (GCR) nuclei in hydrogen targets is an important

physical process in several areas of space radiation physics research. In astrophysics, it is crucial

to understanding cosmic ray propagation and source abundances (ref. 1) because interstellar

hydrogen is the major type of material encountered by GCR nuclei traveling through the

universe. In studies of spacecraft shielding for interplanetary missions (ref. 2), hydrogen has

been found to be the most effective GCR shield material per unit mass. In addition, hydrogen is

a major constituent of human tissue. Therefore, accurate cross sections are needed for properly

estimating GCR radiation exposures to critical body organs (ref. 3).

Previously, cross-section predictions used in these studies have been obtained from semi-

empirical formulations (refs. 4 to 7). The most commonly used formulation is the one by

Silberberg and collaborators (ref. 5). The most accurate formulation appears to be a recent

one by Webber and collaborators (ref. 6). None are based upon fundamental physics. All haw_

numerous parameters that are adjusted as necessary to fit existing measurements.

The production of fragments in peripheral, relativistic heavy ion collisions has been the

subject of numerous theoretical and experimental investigations for about 2 decades. Many of

these investigations were summarized in reviews published during this period (refs. 7 to 10).

Early attempts to explain fragmentation used statistical models (refs. 11 and 12). These were

followed by a two-step abrasion-ablation model (ref. 13), which was based upon earlier work by

Serber in high-energy, inelastic nuclear collisions (ref. 14).

The main shortcoming associated with the use of early abrasion-ablation models for nuclear

fragmentation on hydrogen targets is the unrealistically large proton radius needed for the

prefragment excitation energy estimate. This radius is dictated by the reliance on excess surface

energy of the misshapen liquid drop as the only source of prefragment excitation.

This shortcoming in the model can be rectified by considering an abrasion-ablation

frictional-spectator-interaction (FSI) model where the abrasion stage is described by a quantum-

mechanical optical model formalism and the ablation stage is modeled with cascade-evaporation

techniques. There is no excess surface area energy. Instead, the prefragment excitation energy

is assumed to be provided by FSI contributions from the abraded nucleons. This fragmentation

model is proposed in this report.

Abrasion-Ablation Models

In an abrasion-ablation model, the projectile nuclei, moving at relativistic speeds, collide

with stationary target nuclei. In the abrasion step (particle knockout), those portions of the

nuclear volumes that overlap are sheared away by the collision. The remaining projectile piece,

called a prefragment, continues its trajectory with essentially its precollision velocity. Because of

the dynanfics of the abrasion process, the prefragment is highly excited and subsequently decays



by the emissionof gammaradiationor nuclearparticles.This step is tile ablationstage.The
resultantisotopeis the nuclearfragmentwhosecrosssectionis measured.Theabrasionstepis
often formulatedwith methodsobtainedfrom quantumscatteringtheory (refs.15and 16)or
with classicalgeometryarguments(refs. 13and 17). The ablationstep is typically modeled
with compoundnucleusdecay(refs. 13and 18) or combinedcascade-evaporation(ref. 19)
methods. Other approachesbasedupon nuclearWeisz£cker-Williamsmethods(ref. 20) and
nucleon-nucleoncascadeplusstatisticaldecaymodels(ref.21) have also been proposed.

Although abrasion-ablation fragmentation models have been quite successful in predicting

fragment production cross sections, their predictive accuracy is hampered by the need to estimate

the (unknown) prefragment excitation energy. Various models have been developed for this

purpose (refs. 13, 15, 18, and 22). The most widely used excitation energy formalism (ref. 13)

treats the fragmenting nucleus as a misshapen liquid drop whose excitation is given by the excess

surface energy resulting from the abrasion step. Although this method worked fairly well for

nucleus-mlcleus fragmentations, its use in nucleus-hydrogen collisions, among other difficulties,

required an artificially large proton radius (ref. 13).

When it was recognized that additional excitation energy was required to improve the

agreement between theory and experiment for nucleus-nucleus collisions, the concept of FSI

energy was introduced (ref. 22). This concept is based upon the assumption that some abraded

nucleons are scattered into rather than away from the prefragment, thereby depositing additional

excitation energy. This concept significantly improved the agreement between theory and

experiment.

Over the past l0 years, we have formulated an optical model abrasion-ablation FSI descrip-

tion of fragmentation in relativistic nucleus-nucleus collisions that is used to predict fragment

production cross sections (refs. 16 and 23 to 42) and momentum distributions of the emitted

fragments (refs. 43 through 47). In the present work, this fragmentation model is modified to

make it applicable to nucleus-nucleon collisions. As previously discussed, the main shortcoming

associated with the use of early abrasion-ablation models for nuclear fragmentation on hydrogen

targets is the unrealistically large proton radius needed for the prefragment excitation energy

estinmte. This radius is dictated by the reliance on excess surface energy of the misshapen liquid

drop as the only source of prefragment excitation.

This shortcoming in the model can be rectified by considering the physics of the fragmentation

process. For instance, a picture of overlapping nuclear volumes being sheared off may be

reasonable for heavier nuclei colliding with each other, but it is not reasonable for a single

nucleon striking another nucleus. Instead, a more reasonable physical picture involves individual

collisions between the projectile constituents and the target proton. Some struck projectile

nucleons exit the fragmenting nucleus without further interaction, and some interact one or more

times with the remaining constituents before departing. The remaining nucleus (prefragment), in

an excited state because of the energy deposited during the collision, then deexcites by particle-

or gamma-emission processes. This picture is e_ily described by an abrasion-ablation- FSI model

where the abrasion stage is described by a quantum-mechanical optical model formalism and

the ablation stage is modeled with cascade-evaporation techniques. There is no excess surface

area energy. Instead, the prefragment excitation energy is assumed to be provided by FSI

contributions from the abraded mlcleons. This fragmentation model is proposed in this report.

Theory

In the nucleus-nucleus optical potential formalism (ref. 29), the cross section for producing,

by abrasion, a prefragment of charge ZpF and mass ApF is given by

aabr (ZpF,ApF)= (N)(Z)fd2b[l_T(b)]n+Z[T(b)]ApF (l)



where

and

T(b) = exp[-Ar CrNN(C)I(b)] (2)

I(b)= [27rB(e)] -3/2`f d_o f da(TPT((T) f d3ypp(b+ zo+ y + _T)exp[-y2/2B(e)] (3)

The nuclear number densities pi(i = P or T) are obtained from the appropriate charge densities

by an unfolding procedure (ref. 16). Tile constituent-averaged nucleon-nucleon cross sections

aNN(e) are given in reference 48. Values for the diffractive nucleon-nucleon scattering slope

parameter B(e) are obtained from tile parameterization in reference 49.

In equation (1) a hypergeometric charge dispersion model is chosen to describe the distribu-

tion of abraded nucleons. The model assumes that z out of Z projectile protons and n out of N

projectile neutrons are abraded where

N + Z = Ap (4)

Apv =Ap-n-z (5)

and ( A ) denotes the usual binomial coefficient expression from probability theory.

For nuclear collisions with hydrogen (proton) targets, the appropriate target number density

to use is given by the Dirac delta function

PT(_T) = 6('_7') (6)

Inserting equation (6) into equation (3) yields

Ip(b) = [2rrB(e)] -3/2 f dzo f d3ypp(b + zo + y)exp[-y 2/2B(e)] (7)

v_rith A T = 1, equation (2) becomes

T(b) = exp[--aNN(e)Ip(b)] (8)

The nucleus-hydrogen abrasion cross sections are calculated with equations (1), (7), and (8).

Prefragment excitation energies are estinmted from the FSI energy contribution

Eex c = EFS I (9)

which is calculated with the model of Rasmussen (ref. 22). With this model, the rate of energy

transfer to the prefragment is

dE E
-- (10)

dx 4A

where

,(7)-- aNN _ -- (11)
pCrN N

3



yields
dE
-- = -12.75 MeV/fm (12)
dx

If a spherical nucleus of uniform density is assumed, the average energy deposited per

interaction is

{EFSI} _ 10.2A 1/3 MeV (13)

Therefore, tile abrasion cross section for a prefragment species (ZpF, ApF ) which has

undergone q frictional spectator interactions is

(tt -t- z'_ (1- Pese)q(Pesc)n+z-q_abr(ZpF,ApF) (14)aabr(ZPF, ApF, q)
k q /

where 0 _< q _ n + z, and Peso is the probability that an abraded nucleon escapes without

undergoing any frictional spectator interactions (ref. 34). In this report, the choice of Peso = 0.5

follows from the original work of Rasmussen (ref. 22). Such a value assumes that the nuclear

surface has no curvature, and this value should be reasonably correct for heavy nuclei. For

lighter nuclei, the surface can exhibit significant curvature such that the value of Peso can be

larger than 0.5. Methods for estimating Peso when nuclear surface curvature is considered have

been formulated by Vary and collaborators (ref. 50).

Depending upon the nmgnitude of its excitation energy, the prefragment will decay by

emitting nucleons, composites, and gamma rays. The probability ctij(q ) that a prefragment

species j, which has undergone q frictional spectator interactions, deexcites to produce a

particular final fragment' of type i is obtained with the EVA-3 Monte Carlo cascade-evaporation

computer code (ref. 19). Therefore, the final hadronie cross section for production of the type i

isotope is obtained from

n+z

anuc(Zi,Ai) = __, _ aij(q)aabrtZj,Aj,q)

j q=O

(15)

where the summation over j accounts for contributions from different prefragment isotopes j,

and the summation over q accounts for the effects of different FSI excitation energies. Finally,

the elemental production cross sections are obtained by summing all isotopes of a given element

according to

= A,:) (16)
Ai

Results

Figures 1 and 2 show isotope production cross sections obtained with equation (15) for 32S

t)eams at 400A MeV fragmenting in hydrogen'targets. The figures also show recently reported

experimental results (ref. 51). For clarity, the experimental error bars are not plotted. The 32S

nuclear density used in the calculation was a Woods-Saxon form with skin thickness and half-

density radius obtained from reference 48. The agreement between theory and experiment is

quite good, especially considering that no arbitrary parameters are in the theory. Quantitatively,

a distribution analysis of the cross-section differences between theory and experiment finds that

32 percent agree within the experimental uncertainties, 50 percent agree within a 25-percent

difference, nearly 75 percent agree within a 50-percent difference, and over 82 percent agree

within a factor of 2.

Elemental production cross-section predictions obtained from equation (16) are displayed

in figures 3 to 8 for 2°Ne beams at 400A MeV and 910A MeV and for 328 and 4°Ca beams at

4



400AMeVand800AMeVincidentkineticenergiescollidingwith hydrogentargets.Thenuclear
densitiesusedin thecalculationswereWoods-Saxonformswith skinthicknessesandhalf-density
radii againobtainedfrom reference48. Theseexperimentaldataweretakenfrom reference51.
Overall,the agreementbetweentheoryand experimentis good,althoughthe theory tendsto
predictvaluesthat areslightly largerthan thereportedmeasurements.
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Figure 1. Isotope production cross sections for 400A MeV a2S fragmentation in hydrogen targets for isotopes of P,
A1, Na, and F fragments.

• Theory
o Experimental O

102 ,, Experimental Ne

Experimental Mg ,_'2 °

.___101f£_100t _,Experiment_

o 10.1|, _ i i _ , , , ,
12 14 16 18 20 22 24 26 28 30 32

Fragment mass

Figure 2. Isotope production cross sections for 400A MeV 32S fragmentation in hydrogen targets for isotopes of Si,

Mg, Ne, and O fragments.
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Figure 3. Element production cross sections for 400A MeV 2°Ne fragmentation in hydrogen targets.
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Figure 4. Element production cross sections for 910A MeV 2°Ne fragmentation in hydlogen targets.
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Figure 5. Element production cross sections for 400A MeV 32S fragmentation in hydrogen targets.
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Figure 6. Element production cross sections for 800A MeV 328 fragmentation in hydrogen targets.
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Figure 7. Element production cross sections for 400A MeV 4°Ca fragmentation in hydrogen targets.
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Figure 8. Element production cross sections for 800A MeV 4°Ca fragmentation in hydrogen targets.

Concluding Remarks

A simple, yet accurate, optical potential abrasion-ablation fragmentation model has been

developed for use in studies of galactic COslnic ray breakup on hydrogen targets. The model
has no arbitrarily adjusted parameters. Model predictions have good agreement with recent

laboratory measurements of elemental and isotopic production cross sections for the fragmenting

of neon, sulfur, and calcium beams on hydrogen targets.

NASA Langley Research Center

Hampton, VA 23681-0001

October 28 1993
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